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Introducing a new type of D = 10 harmonic superspace with two generations of harmonic 
cc~wdinates, we reduce the Green-Schwarz (GS) superstring to a system whose constraints are 
Lorentz covariant and functionally independent. These features allow us to impose I.orentz-co- 
variant gauge fixing conditions for the reparametrization and the fermionic ~-invarianccs. The 
resulting QI*RST corresponds to the finite-dimensional Lie algebra of the remaining purely 
harmonic constraints. The super-Poincar6 symmet D acts in a manifestly Lorentz-covariant form 
and is apparently anomaly free. 

1. Introduction and motivation 

Real iza t ion  of  the impor tance  of manifest  space- t ime supersymmet ry  for the 

supers t r ing  theory  (anomaly  cancel la t ion,  finiteness, vanishing cosmological  con-  

s tan t  etc.; see ref. [1] for a deta i led discussion and a long list of references) a t t rac ted  

a lot of  interest  in the Green-Schwarz  (GS) formula t ion  of the supers t r ings  [2-6].  

In  spi te  of  a few years of intensive efforts,  progress towards  the super-Poincar~ 

cova r i an t  quan t iza t ion  of  the G S  superstr ings was obs t ruc ted  until  now by the 
fo l lowing ser ious problems.  

The  or ig inal  G S  act ion defines a cons t ra ined  system which conta ins  a compl ica t -  

ed mix ture  of  first and second class constraints .  These const ra in ts  cannot  be 
s epa ra t ed  in a Lorentz-covar ian t  way [7]. 

The  covar ian t  separa t ion  p roposed  in refs. [3, 5] leads in fact to sets of functionally 

dependent cons t ra in ts  (reducible sets of constraints ,  according  to the te rminology of  
Ba ta l in -F radk in -Vi lkov i sky  (BFV) [8-10]). 

It was po in ted  out  in ref. [11] that the appl ica t ion  of  the correct  BFV procedure  

[9, 10] to these reducible  const ra in ts  would ei ther break the Lorentz  invar iance (as it 
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is the case in ref. [12]*), or would force the level of reducibility [9] to be o0 (which is 
intractable). 

Ref. [11] proposed a new formalism for consistent covariant canonical quantiza- 
tion of the N = 2 Brink-Schwarz (BS) superparticle [14, 15] envisaging generalization 
to the case of the GS superstring. The main ingredient was the introduction of 
additional pure gauge degrees of freedom - harmonic variables carrying Lorentz- 
spinor indices. These were crucial in order to obtain an irreducible set of constraints 
without destroying manifest Lorentz invariance and without altering the physical 
content of the model. 

An unpleasant feature of this formalism was the fact that the BRST charge QB~s'r 
became rank two. 

Also, some obscure points persisted: 
(a) The geometrical meaning of the spinor harmonics. 
(b) The origin (and the reality properties) of the first class constraints and the way 

they substituted the old second class ones. 
In ref. [13] the following successes were achieved in applying the D = 10 harmonic 

superspace formalism to the N = 2 BS superparticle: 
(a) A significantly simpler and geometrically more meaningful realization of the 

D = 10, N = 2 harmonic superspace was introduced. The bosonic harmonic coordi- 
nates carried Lorentz-spinor as well as Lorentz-vector indices. In particular the rank 

of the n e w  QBRST was one. 
(b) The BFV-BRST covariant second quantization [16] of the N = 2 BS superpar- 

ticle produced an off-shell unconstrained superfield action for the linearized D = 10, 
type I I B  supergravity. 

(c) We elucidated the mechanism of disentangling the second class constraints 
and the methods of their treatment. 

In the present paper we extend the formalism of ref. [13] to the GS superstring. 
First, we use the Lorentz spinor/vector harmonics to separate, in a Lorentz- 
covariant and functionally independent form, the first- and second-class constraints 
of the GS superstring. Second, we impose, with the help of the harmonics, Lorentz- 
covariant gauge fixing conditions for the local fermionic x-invariance and for the 
reparametrization invafiance. Third, we introduce a new, second generation of 
harmonic variables with a simple geometrical meaning of their own. They enable us 
to disentangle the resulting Dirac brackets for the remaining canonical superstring 
coordinates and to recognize them as sets of canonically conjugated pairs. 

We end up with a covariant superstring action (eq. (4.19)) whose sole constraints 
are the remaining purely harmonic first-class constraints forming a finite-dimen- 
sional Lie-algebra (which is apparently anomaly free). 

* I.orentz invariance is explicitly broken in the formalism of ref. [12] by the introduction of two 
constant light-like vectors which arc not dynamical degrees of freedom. 
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The main feature of this action is that the super-Poincar~ symmetry acts in a 
manifestly Lorentz-covariant way and is apparently anomaly free. 

The plan of the paper is as follows. In sect. 2 we briefly recall the definition and 
the basic properties of the Lorentz-spinor/vector harmonics [13] corresponding to 
the coset space SO(1,9) / (SO(8)× SO(l, 1)). Then, we introduce the second genera- 
tion of harmonics realizing the coset space SO(8) / (SU(4)x  U(I)). In sect. 3 we 
supplement the GS superstring action with the action for the (pure-gauge) harmonic 
degrees of freedom. They enable a Lorentz-covariant irreducible disentangling of 
the first class constraints from the second class constraints. In sect. 4 we fix in a 
Lorentz-covariant way the local fermionic and reparametrization invariances. In 
sect. 5 we discuss the modification of the supersymmetry transformations necessary 
to preserve the Lorentz-covariant gauge fixing conditions of sect. 4. We find the 
explicit form of the super-Poincart ~, generators. The algebra is apparently anomaly 
free. Appendix A contains our spinor conventions. Appendix B sketches the proof 
that the harmonic variables are pure gauge degrees of freedom. 

The main results of the paper are concentrated in the formulae (4.15)(4.22) 
which contain the canonical variables, the action in the hamiltonian form, the 
constraints and their BRST charge. Since the K-and reparametrization-invariances 
are fixed, Q~ksv contains only information about the harmonic constraints. 

2. Two-genera t ion  harmonic  superspace  in D = 10 

The formalism of ref. [11, 13] as well as the present formalism rely heavily on the 
concept of harmonic superspace which was first proposed in ref. [17] as a basic 
ingredient of the unconstrained, off-shell superfield formulation of N = 2, 3 matter-, 
gauge- and supergravity theories in D = 4. 

The harmonic superspace of ref. [17] is parametrized by (x",OA~.u) where 
(x j', 0A,) are the ordinary (extended) superspace coordinates and the additional 
bosonic coordinates u belong to a coset space G / H .  Here (3 denotes an appropriate 
global symmetry group of the supersymmetric theory and H is an appropriate 
subgroup of G. The harmonics u serve as "bridges" converting G-covariant indices 
into H-covariant ones, preserving at the same time the G-symmetry. In the case 
D = 4, one has (3 = SU(N)  (the automorphism group of N-extended supcrsymme- 
try) and H = U ( I )  ~ ] for N=2 ,3117] .  

Let us now recall the definition of the Lorentz-spinor/vector harmonic super- 
space of ref. [13] which combines the nice features of the Lorentz-spinor harmonic 
space of ref. [11] with the previously introduced covariant "light-cone" harmonic 
superspace [18]. 

The corresponding harmonic variables, which we now call first generation 
harmonics, consist of the following objects: 

(i) v,~ ' x/Z-two D = 10 (left-handed) Majorana-Weyl (MW) spinors, 
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(ii) u"-eight (a  = 1 . . . . .  8) D = 10 Lorentz vectors, which satisfy the constraints*:  ,a 

Iv: ':(o,+>%; +I [ = - ' .  

I,+'. ++] ° -o  t ,#2to  ) vti- u , -  , 

. h~ COb (2.1) U b t  U ~ . 

In the last line of (2.1), C "h denotes the D = 8 charge-conjugat ion matrix. The group 
i 61 H = SO(8) × SO(I ,  1) acts as an internal group of local rotat ions on u, ,  v + :  where 

" ' ' charge under SO(l ,  1). u , ,  t r ans form as SO(8) (s) -spinors  whereas v'-2 carry + 2 
Because of the celebrated D = 10 Fierz identity (cf. e.g. ref. [1]): 

(o~,)"'~ (o~') v~ + (o~,)av(o~') "8 + ( % )  v"(o~')~+ = 0 (2.2) 

the compos i t e  Lorentz vectors: 

are identically light-like and, 

or + L ~ f l  . 1 
u ;  = v~- : (%) v~ , (2.3) 

therefore, the first generation harmonics  realize 

through (2.1), (2.3) the coset space SO(l ,  9) / (SO(8)  × SO(l ,  1)). 
Let us now introduce the second generation of harmonics  w~, ~ which realizes 

the coset space SO(8) / (SU(4)  × U(1)). They are defined as follows: 

w w,O = = o ,  

w ~  i~ = C ki, (2.4) 

or, equivalently:  
k - i  k - i  Cki( w,, wb + wh w; ) = Cab. (2.5) 

Here  C ki= C ik denotes the D = 6 charge conjugation matrix (recall that  locally 
S U ( 4 ) -  SO(6)). C ki is used to raise and lower SU(4) spinor indices (cf. appendix  
A). The  two groups,  H = S O ( 8 ) ×  SO(l ,  1) and K = S U ( 4 ) ×  U(1), act as internal 
groups  of local rotat ions on w~, w~ which t ransform as (8,0) with respect to H and 
as (4, + ~), (4, - ½) with respect to K. 

Hencefor th ,  we shall use the shor thand notations:  

u~ as in eq. (2 .3) ,  

0 a =. OtXbl~ , 

o ~-=_O~(V+~OuV±~2). 

* All spinor notations and conventions are explained in appendix A. 

(2.6) 
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The following harmonic differential operators preserve the harmonic constraints 
(2.1), (2.4) and will play an important role in the sequel: 

0 3 3 c9 3 0 
DOe= o u b -  + + - - -  - - - -=-  (2.7) w ak ff;ak W bk ff~ bh 

O 1 0 
D - "  + - -  + 7v  ':o+o"-------7, 

1 [  , 3 , 9 

D - + = - -  t v ~ - - - ' - 7 - v , , "  
2 Ov~ ;. 8v~ ~ ' 

k[1 ,s~' 0 /~(1 ) i  

Z O~i ' 

l { k O  k O 

1 0 
E + , =  i (2.8) d 

We have used the notations: 

p'g= ~(p'~ - 0~1), 

~'~ = ~ ( ~ ' d  - ~ p ' ) ,  

where p/, t5/(I = 1 . . . . .  6) are the D = 6 o-matrices (cf. appendix A). 
The D's  and E ' s  form the algebras (only the nonzero commutators are listed): 

[ D "h, D cd ] = C/,,'D,,d_ CUcDbd + C.,~Dh¢_ c b d D a c ,  

[D "b, D +c] = Ch,D- ,  _ C,,D+I,, 

[D ' , D - " I = D  +", (2.9) 

[ E IJ, E L,c/] = ~ I I . E J M  + 8 J K E I I "  _ ~ J L E I K  __ ~ I K E J I .  ' 

[ E/J, E *t- ] = 8JI-E+I _ 6II.E+J 

[E +-, E 't] = E " ,  (2.10) 
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from which one immediately recognizes: 
(i) D "h, D- -  as generators of SO(8) × SO(l, 1) and D ' "  as the half of the coset 

generators corresponding to SO(l, 9)/(SO(8) × SO(l, 1)); 
(ii) E/J. E ' -  as generators of SU(4)× U(1) and E '  t as the half of the coset 

generators corresponding to SO(8) / (SU(4)x  U(1)); 
In appendix B we sketch the proof of the following important property. 

Let 

, = . ) ; , , .  . . . .  . w : ]  

be an arbitrary superstring field, i.e. a functional of the superstring coordinates 
x~'(~), 0~,,(,~) and a function of the harmonic coordinates defined in (2.1), (2.4). 

If q~ satisfies the harmonic differential equations: 

Dohcl)=D ~ q~ = D-"q~ = O, 

ELtCb=E ' ~ = E * 1 ~ = 0 ,  (2.11) 

then q) is in fact independent of the harmonic coordinates. 
This property is the statement (on the first quantized level) about the pure gauge 

nature of u, t,, w (cf. next section). It ensures the complete equivalence between our 

"harmonized"  GS action and the standard GS superstring action. 
The reason why our harmonics play an essential role in the subsequent construc- 

tion lies in the fact that we perform a suitable transformation mixing in a nontrivial 
way X ~', 0A,, with u, v, w so that we can solve covariantly the irreducible covariantly 
disentangled set of first- and second-class superstring constraints (cf. sects. 3 and 4). 

where 

3. Reformulation of the GS superstring 

The standard form of the GS superstring action reads: 

-e'"(Ot%,O,,,01)(02o~'O,,O2)}, (3.1) 

I I ~ -  O.,X~'+ i ~., (OAo~'O.,O~). (3.2) 
A = l , 2  

In eq. (3.1), g,,,,('r,~) (re, n = 0 , 1 )  is the 2D world-sheet metric and X~'(~',~), 

0A(r, ,~), A = 1,2 are the superstring coordinates. 
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In the case of the liB theory the O's are two D = 10 MW spinors 0 A = 0~, with 
equal (left-handed) chiralities. In the case IIA they have opposite chiralities: 
0~ = 01, ~, 02 = 0 ~ ( = - C ~ 0 2 ~ ) .  We always use D = 10 o-matrices with undotted 
indices (cf. appendix A). 

The bosonic constraints issuing from the action (3.1) are: 

Pg -- 0 (3.3) 

(the Weyl invariance which from now on is gauge fixed by g , , ,  - e#'8 .... = 0) ,  

T A - I I ~  + 4i(--1)ADA0~ = 0 (3.4) 

(the generators of the reparametrization invariance). We used in (3.4) the quantity: 

H~ -.@~' + ( - 1 ) A [ x  '~' + 2iOAo"OA] , (3.5) 

where ~ '  denotes the canonically conjugated momentum to X ~'. 
The fermionic constraints arising from (3.1) read: 

D A = - - i P o A - - [ ' ~ " + ( - - I ) A ( X ' " + i O 4 0 " O ' A ) ] ( % O A ) = O ,  (3.6) 

where P0A denotes the canonically conjugated momentum to 04. 
The algebra of the constraints (3.4), (3.6) is: 

{ TA((), r•(r/)}p n = 8 ( -  1) A6A,[TA(~)6'(~j -- r/) + ½ r j ( ~ ) 6 ( (  - ~/)], (3.7) 

{ DA(~), Dn('r/) } pB = 2 i 3 A B 3 ( ~  -- r/)IJA(~), (3.8) 

{ DA (~), TR(rt) } pB = 4 ( -  1 ) ' ~ 3 A B D A ( ~ I ) 3 ' ( ~  --  7 ) .  (3.9) 

It is clear from (3.4), (3.7)-(3.9) that the fermionic constraints (3.6) form a 
mixture of 16 first-class and 16 second-class constraints. 

The D's (3.6) contain a first class part which expresses the fact that part of the 
0A's are pure gauge degrees of freedom. These first class constraints are the 
generators of the x-symmetries [2,4], and their action is similar with the way in 
which covariant supersymmetric derivatives eliminate reducible superfield com- 
ponents. 

The second class part of the fermionic constraints expresses the fact that part of 
the 0A's are their own canonical conjugates (as it is the case for ordinary Majorana 
fermions). 

The main problem was until now the functionally independent covariant sep- 
aration of the first and second class constraints from D A (eq. (3.6)). 
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The  solution, as described in the present paper  and already accomplished in the 
case of  the D = 10 superparticles [13, 19], is achieved through the introduct ion of 
addi t ional  pure  gauge harmonic  degrees of freedom. 

The  new action, which we write in the hamil tonian form, reads: 

S = S G S  + ¢ ( t )  + ? ( H )  • ' - 'harmonic ' - ' ha rmonic ,  (3.10) 

sJ:[ ] So, s =  d r  , d ~  ~ , O , X  ~'+ EPoA O,OA- E A A T A - -  MADA , 
A A 

(3.11) 

"' f [ °   'oo +, 1(3.12) S h a r m o n i c  = d r  p, , ,O, .u]+p~. ,  a . # ~ : - A , , b d " b - A ~ - - d - * - A S d  +a , 

S(II)harmonic = f d r [  P~k O,w~ + P~i, O,ff~ - h 'J e 'J - X ' e ~ - X ' e + t] . (3.13) 

The  const ra in ts  d ~h, d -+, d ' "  in (3.12) and e u, e +-,  e . I  in (3.13) denote  the 
classical counterpar t  of D ~h, D -+, D '~ in (2.7) and E IJ, E" , E ~t in (2.8), 

respectively. All constraints  are first class, except Dff which is a mixture of  first- 
and second-class.  

Because of the kinematical  constraints  (2.1), (2.4) on the variables u~,, v ; ,  
def ining our  harmonic  superspace, their conjugate momen ta  are similarly kinemati-  

cally const ra ined*:  

p~(~u h) = O, 
u la 

t ~ + l )  
pua V *- :o  V -  : = 0 ,  

i i ] i 
,a 

2 ~ v£ + v,- -~p,~ = 0, :p ,7-  

ff~ i P~k ~ = 0 ,  

(3.14) 

a WI p ~  ~ = O, 

p~.~=i=w~ 0,  

a WI Pwk o = 0. (3.15) 

The  const ra in ts  (2.1), (2.4) and (3.14), (3.15) may be equivalently regarded as a 
sys tem of conjugated second-class constraints  and thus all subsequent  Poisson 
bracke t  relat ions are in fact Dirac bracket  relations on the surface defined by (2.1), 
(2.4) and (3.14), (3.15). 

~ yJ,.),  ~ y. t ,  y t , . ) .  * ( A n t i - ) s y m m e t r i z a t i o n  of  indices  is d e n o t e d  as: y[,,;,I __- 3( Y - y(,,h) _= 2( + 
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An important property of Oh~r~o.~CCt'm, eqs. (3.12), (3.13), is that the whole dynamics 
consists of pure gauge rotations. This is because the total harmonic hamiltonian is a 
linear combination of first-class constraints only and because there is no harmonic 
varible among v, u, w's to be identified with the evolution parameter. Thus, the new 
"harmonized" GS action (3.10) is physically equivalent to the standard one (3.1). In 
particular, the apparent breaking of invariance under arbitrary world sheet repara- 
metrizations by cd.m (3.12), (3.13) (where all harmonics are tj-independent), does ~harmonic 
not have any physical effect. 

Equipped with the harmonic formalism of the preceding section, we can now 
explicitly solve the problem posed in the introduction: the Lorentz-covariant and 
functionally independent separation of the first-class and second-class parts of the 
constraints D A (3.6). 

Let us consider first the type liB case. The solution is provided by the following 
decomposition of the original MW constraints D~' with the help of the first 
generation harmonics v;' .," u~,."" 

1 , 1 
D,o= V ~ -  ( o  h~, - : ) ° DA,,-+', + - -  U ;  ( ~°+ o',v-, '~) a ; , ) .  (3.16) 

where 1I/4 (~)  = V" ':Ii A ( ( ) v  + ; is a Lorentz scalar. 
By inverting (3.16) one obtains: 

' " l~  D A (3  17) O,4":a=u :o  a A 

(first-class generator of the K-symmetry) and 

c~ :o= ~(,,-':o°o'D~) 

( second-c lass ) .  
Now, the PB relations (3.7)-(3.9) are rewritten as follows: 

(3 .18 )  

{ o2~"(~), D , ;  ; h ( n ) } ~ B  ' "" + 

- 16( - 1) ASAd~( (  -- 7)( v + ':o'0~ ) D," ' : " ' ( ( )  

- ' - '  ~ ' L : ( ~ )  + 8 ( - 1 ) 4 a A , ~ ( ~  n)c°'( ,:  -'o O~)D ' 

' '- ", )[( 1 ) % , ~ ' ( ~ - ~ ) ]  + 8 ( v  :o"o 'o% - ) a . ~ . - ( ~  - 

X( c-~oho, o v - ) G ] , . - ( r l ) ,  ( 3 .19 )  
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{ D,~"(~),G[~}h(rl)}pB=4(--1)'~SAff~(~--~7)(v ~obo,.o'O,~) 

x (v '  :,o"o{0% ' , ) ad / , ( f ) ,  (3.20) 

{ DA~':"(;) ,T,(~)}pB=S(--1)AsAA[DA':"(;)8 ' ( ; - -~)+ ~ ( D ; ; " ( ; ) ) ' 8 ( ; - ~ ) ] ,  

(3.21) 

{G/~': 'k(() ,Tt , (~)}pB=4(--1)A8 [G~': 'k(g;)8'(;--~)+(G~ "k ( ; ) ) ' 8 ( ; - -~ ) ]  
• A B ? , 

(3.22) 

(3.23) 

(3.24) 

{ TA(t), r ~ ( n ) }  pB = 8 ( -  1 ) % ,  [ T A ( t ) ~ ' ( ~ -  , )  + ) ( L ( ~ ) ) ' 8 ( ~  - ")], 

{G;':"(~). a;~ . :h(,)} pB = ; aA~c .hn~  (~ )~(~  _ 7 ) .  

Lct us consider now the type IIA case. The irreducible covariant separation of D A 
(3.6) into first-class and second-class parts reads now: 

D~'= rS~-; (o~v+':) O~#+Ti-~(U~o o~; ',)°a~-;, (3.25) 

1 1 i 

= _ _  -'  ~' ~ (H2obv ' ':),G2b , (3.26) o:o hT( , ,o~v ~)oD~,,: + 
or, inversely: 

' ) D2 ~ '-'" = v - :o"o  ' /~2D 2 (3.27) 

(first-class generator of the x-symmetry), 
i 1 a 

Gf ,"  = v- ~o D 2 (3.28) 

(second class), for D 1' '~", G~ ['" the same as in (3.17), (3.18). 
The PB relations become: 

t t - -  . ~ , a b r n r  

{D:~)o(~) ,D2~"(TI)}pB- - ' ¢ -  112 ( ~ ) T 2 ( ~ ) 8 ( ~ -  7) 

- 4 8  (,~ - , ) (  v - ; o ( h o  ' 0 ; )  n 2' ':"'(~) 

+48 ( t~ -  n )C"h( v '~o'O+ O; ) D2U ( ~ ) 

+ 2 ( v  ':O"o(odv ~ ': )Gid"( ~ )8'( li -- , ) 
t + i X (v-':oho"o~v" ~)G2,.:(r}), (3.29) 

{ G~ ; " ( ( ) ,  G~ "~(n) },,,, = 2iC"~II~ (~)8(~ - n) .  (3.30) 

with the rest remaining the same as in (3.19)-(3.24). 
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4. Covariant gauge fixing conditions 

We shall consider in detail in the case of type IIB GS superstrings the covariant 
gauge fixing procedure for the fermionic x-invariance generated by D + ':" (3.17) and 
for the reparametrization invariance generated by T,4 (3.4). The corresponding 
results for type IIA GS superstrings are analogous and will not be explicitly listed. 

it is convenient to perform the following change of variables which mixes in a 
non-trivial way the original superstring coordinates X~'(,~), 04('~) and the harmonics. 

x , ' ( ~ )  ~ x"(~), x~(~), 

with 

X"(~)  = u~,X~'(~), (4.1) 

x 

OA,, ~ q)~, q,] '2- (4.2) 

with 

1 1 

and, correspondingly for the canonical momenta. 
The new invariables are all Lorentz scalars by construction. 
Eq. (4.3) allows to impose the covariant gauge fixing for D A' '2-. 

(4.4) 

After that, one has to compute the new Dirac brackets on the constraint surface. To 
achieve it, one uses the relations (3.19)-(3.24) and the PB relations: 

{ D2'~a(~), ¢+{h(7/)}p u = - - iSAnC"hI I~(~)8(~- -  ~) ,  

I t b { =o, 

{ a~- ',--(~), ¢;, ' ~ ( n ) } ~  = o, (4.5) 

The new Dirac brackets (DB) on the constraint surface 

c,~ '., = o ,  D~' ' :"= O, ¢,~':" = 0 



360 E. Nissimov et al. / Green- Schwarz superstring 

are (the vanishing ones are omitted): 

{ q',] (~), ~ ( 7 ) }  DB = --iSABC~bS(~ -- 7 ) ,  (4.6) 

{ .~° (~) ,  Xb(7)}D~ = - C°bS(~ - 7 ) .  

{~@+(~),X ( 7 ) } D n = { . ~  ( ~ ) , X ' ( 7 ) } D B = 6 ( ~ - - 7 ) .  (4.7) 

In order to expose the fact that actually the q~'s represent according to (4.6) 
canonically conjugated pairs, one uses the second generation of harmonics (2.4): 

. ~ ( ~ ) =  '~ ° . = ~,,ffA ('~) ~ ( ~ )  w~q,] (,~). (4.8) 

The Dirac brackets (4.6) are rewritten as: 

{ . ~ ( ~ ) . ¢ ( 7 ) } , , .  = { , ~ ( ~ ) . G ( 7 ) } D .  = 0, 

{ q~](~), ~ ( ~ ) }  Dn = - - iC~kSA~(~ -- 7 ) .  (4.9) 

Actually, in the type II theories, one can avoid the introduction of the second- 
generation harmonics by forming the holomorphic combinations (for the analog 
light-cone procedure, see ref. [1]): 

,/,o ( ~ )  = ,q- ~ ~ .  , T  
V2 ~,¢'~1(~) -~- i ~ ( ~ ) )  ' ~ a ( ~ )  = V~ ( ~ ( ~ )  -- i ~ ( ~ ) '  

which form a canonically conjugated pair: 

( + ° ( ~ ) , ¢ ( ~ ) } D .  = 0. 

(~o(~) ,  ~"(~)}D.  = 0. 

{ ¢ ( ~ ) .  ~ ( ~ ) } , , , ,  = - ~ c ~ 8 ( ~  - 7 ) .  

However, we shall stick to the formalism with two generations of harmonics since it 
allows to treat on equal footing all types of superstrings, including those with only 
one 0-coordinate (e.g., the heterotic string). 

The new small phase space is now formed by the variables: 

X--* (~), X"(~),  4~(~), u, v, w (4.10) 

and their respective canonical momenta: 

• -@ q:(~),-@"(~), ¢~ ('~), Pu, P,., P,.- (4.11) 
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The only variables here transforming nontrivially under the korentz group are 
1 

uu,  ~ t,,,-" : and their momenta. 
The reparametrization generator becomes*: 

= + ( -  

+ 2 i ( -  1) 4 [O](~J)~;k('~) - 4).]k('~)~Ak(~)] • (4.12) 

The expression does not explicitly contain the harmonic variables and it is bilinear. 
Now we can further impose a covar ian t  gauge fixing condition for the reparame- 

trization invariance: 

where q ", P )  

1 

X-(,~) = q '  + P'~-, ~+(,~) = ~ P - ,  (4.13) 

are the corresponding zero modes in the mode expansions: 

' ) X ' - ( ~ ) = q  + Y'. X,," c '',~, ~ ± ( ~ ) =  y ~ ( P ~ +  Y' P , : e  '''~ 

and similarly for X"(~), ,~('(~). 
Eqs. (4.13) and: 

7~ ( , ~ ) = 0  (4.14) 

are solved in precisely the same way as the analogous equations in the noncovariant 
light-cone formulation [1]. 

Thus, on the surface defined by: 

 o-0 ,+'o 
" " - • ~ A  " = 0 

and eqs. (4.13) (4.14), we obtain the following final results for the canonical 
variables, hamiltonian, gauge symmetries, and BRST charge. 

The "'small" phase space is parametrized by the canonical coordinates and 
momenta: 

( q - ,  X ~ ( ~ ) , q ) k ( ~ ) , u , v , w ,  P ~ . 4  , .#~(~),  ~ ( ,~ ) ,  p ~ , p , , , p ~ )  . (4.15) 

We stress once again that in the present harmonic formalism all light-cone l i ke  

indices +_, a are in ternal  whereas Loren t z - im;ar iance  is manifest. (The Lorentz 

* For any two Lorentz-vectors A~,, B~, we have in the harmonic basis: A~ = u~A,, - u~ A u~,,4 " 
and similarly for B~,, A~B~,= A"B~-  A " B - A B ' .  
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group acts only on the space-time indices of the first generation of harmonics, 
a f i u~, v#: and their momenta.) 
The canonical hamiltonian is given by: 

/ t . °  2~ ~ ~,,,+ x - + i Z ( - 1 ) A (  *-' 't'3't'Sk - ¢ ' 3  'I'A, • 

- -  , ,4  

The only remaining constraints, after fixing x and reparametrizatlon are the 
harmonic first class constraints (2.7), (2.8), which take the following form on the 
small phase space (4.15): 

8 b 8 bo~ oo',+ f° x (~),x-2-~]' = _d~ [x°(~) ~-x,,(~) 

0 0 
b = D * + q + - - - q  - - ,  

Oq* Oq 

0 
b - "  = D ~" + q ' ~ - -  + q~ - -  (4.17) 

Oq- Oq~ 

(here q" is the zero mode of X~(() and q ~ now plays the role of a time, cf. eq. 
(4.13)). 

F-"lJ= E I J  -~- _1) ~ A f"fl~eoS(~)(o')'~,A,(~), 

f" ~(~)~,~ A -¢l 

I I T  ~ pl ~, =E',+ ~v~ Ef  d~(~)()~,,~,(~). (4.18) 
h - - - , r r  

The final action of the "harmonized" GS superstring on the small phase space 
(4.15) takes now the form: 

i 1 ° 
- P "  O , q -  - H~a ~ + p,~, O , u ]  + p , ~  ~'~ O,v, ,  ~ : 

--A,hd"b-- A" d -+-  A2d*O + p"wk O,w,~ + p~  O,~  

--~klJ g l J - -  ~k-+ e '  - --  )k /y+t], (4.19) 
1 
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where d +h, . . . .  Y+t are the classical counterparts  of the constraints (4.17), (4.18) and 
Hca,, is given by (4.16). 

The  harmonized GS action (4.19) is explicitly Lorentz invariant (the indices _+, a 
of P, q, X, gz are internal, these variables being Lorentz scalars by construction).  

The  (first quantized) BRST charge corresponding to (4.19) reads: 

Q B R S T  = ( I )  4-  f l ( l l }  
h a r m o n i c  Qharmonic ~:~ h a r m o n i c  , (4.20) 

~i~ [ b . h +  
Qha~m,,m," = iT.h 

+9 +9 +9 h +9 ] 
7 - ° -  - 7  " - -  ++,~---- - - -  07b +97a 7ha 7d +97ad J 

+i7  L) - - ~7. + iTS b ° 

+9 +9 +9 +9 +9 +9 
+ i  - -  + i - -  + i - -  (4.21) 

+gAsh +9+.h +gA" +9+ OA " +9++,+ " 

Q ( I I )  _i~ lJ[ f f l J+~lK 0 ~JK a a O ] 
h . . . . .  ic - -  O~J---"~ -- O~I--"K -}- ~- I O~ "J -- ~ J --O~ I 

+i~+[/~_+_~+_ c3 ] 
3 O <9 3 O O 

+ i O~,~ df-"-t~ + i O - - ~  O( + i 3~ ~ 3 ( '  " " (4.22) 

The  variables appearing in the above expression of the BRST charge are orga- 
nized as follows: 

Lagrange multiplier ghost antighost o f  the constraint - 

a +- n ~ b - '  

A o n-o +++, b . o  
X'+ #'+ ('+ £,+ 

x ..... ~ ( F5 + 
' # ' ( , ,  £ ,~  

Since there are no normal ordering ambiguities in (4.17), (4.18) the constraints 
/)~h, . . . .  E+ ~ form the same finite-dimensional Lie algebra as (2.7) and (2.8). 
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Therefore Q~Rs'-r (4.20) is apparently anomaly free, the K and the reparametriza- 
tion invariances were solved explicitly and the Lorentz invariance is explicit and 

linearly realized. 
Now, the question arises: where does the potential source of anomalies appear in 

the present harmonic superspace formalism? The answer is provided by looking at 
the consequences of the pure-gauge nature of the harmonic variables u, v, w for the 
covariantly gauge-fixed "harmonized" GS superstring (4.19). 

As demonstrated in appendix B, the harmonic constraint equations (2.11) for the 
superstring wave function • in the central coordinate basis (X"(.) ,  0A,,(.); u, v, w) 
before any gauge-fixing procedure imply as trivial consequences the eqs. 
(B.9) - ( B . 1 0 ) :  

D "q) = 0, E zq~ = 0. (4.23) 

Here the harmonic differential operators D-",  E -~ are defined as: 

0 0 
_ _  m , D " = u ,  + lv+"o o" , 
0 u~,, c) c * ." 

" Y -  ~ - /  / O 
V: wo(o )kOw , (4.24) 

and possess a simple geometrical meaning explained in appendix B. 
On the small phase space (4.15), the operators (4.24) acquire the form (cf. eqs. 

(4.17), (4.18)): 

/ ) - " = D - O - I - L "  d~{ 

+ - -  1-r°"c"(.. + ( -  1)A x,.) 
4P+ " A 

× [ w,k~] + w,.i~]l [ wa,~P~ + WaSO~] }'  (4.25) 

/~- '  = E " - 2V51 'q- ,4 y'~ ~f'~- d~ ~;i0~iq~;4-k~, d . (4.26) 
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In eq. (4.25) the following notations are used: 

8 
.c;~,(,~) = _ i s x , ,  , ~ ) , 

, . + _, Cm.C.,~ C h a C ' " ' .  l ' " t " " ( u ,  e )  - v - , o [ " o h o ' o a ] o  v , + 

i e ~'7~ 

X ( ( ) = q -  2~P-- y" - - f  d n e  
n~C) n 

- in~, I 

,~--t ] ' ' i ~  (,t,~,t,4~ ~'- - 0,3 'bAk ) (4.27) × ~ '" (~)x ' (~)  + ,  
A 

2°[ 
~ - ( ~ )  = ~ -  ~ ° ( ~ ) ~ o ( ~ )  +x,°(~)x,;(~)+iZ( ., ~-, _ , %  )] - 1 )  ('~.d'Ak ~ .~ • 

,4 

(4.28) 

(4.29) 

E ' a , [ q , q  , x,(.),~,~,(.): u,,?. w ) = o .  (4.30) 

Let us particularly emphasize that eqs. (4.29), (4.30) do  no t  correspond to additional 
(quantized) first-class harmonic constraints /5 ", E i (4.17), (4.18), but rather are 
c o n s e q u e n c e s  of the harmonic constraint equations: 

/),t,q~ = 0 . . . . .  /~' tq) = 0 (4.31) 

due to the specific form of the harmonic expansions in the central coordinate basis 
(B.1), (B.6). 

Now, the source of potential anomalies in the harmonic superspace formalism is 
revealed in the consistency condition for eqs. (4.29): 

[ b - " . / 5  "] = 0. (4.32) 

Inspecting formula (4.25) together with (4.27), (4.28) we see that due to the 
presence of trilinear terms in (4.25) there are nontrivial cancellations leading to the 
result (4.32). These cancellations resemble completely the nontrivial cancellations in 
the commutator  of the D = 10 coset Lorentz generators [J  ", J h] in the nonco- 
variant light-cone formalism (ch. 5 of ref. [1]). 

b - "q~[q  +, q--, X"( . ) ,  0 ] ( - ) ;  u ,  t,, w )  = O, 

Thus, for the covariantly gauge-fixed superstring action (4.19), the consequences 
(4.24) of the pure gauge nature of the harmonics u,  v, w ,  i.e. eqs. (2.11), imply: 
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Thus, we conclude that possible quantum anomalies in [D ~, b -/'] in (4.32) for 
D e 10 infringe the pure gauge property of the harmonic variables u, v, w. 

5 .  S u p e r - P o i n c a r ~  a l g e b r a  

In the present formalism all Lorentz indices are absorbed by the first-generation 
,+~ a Therefore, the Poincar~ algebra acts in a manifestly covariant harmonics c. , u~,. 

form in the "harmonized" GS superstring theory (4.19). 
The explicit form of the Poincar6 generators reads: 

O u . O  1(  , O , O ) 
- - - v ' ~ o  "~ , + v 2 o  "~ ( 5 . 1 )  

M"~= u"~'Ou~ Ou~ 2 3v ' 2 Ov " ': ' 

1 
P" = u~P" - u "P' ~;-u +"H~,, (5.2) 

where (%~)}] = o~]o,l~l ~. With the risk of being surreptitious let us remind the reader 
that P '  is a Lorentz scalar and the superscript + refers to its charge under the 
SO(1,1) internal gauge group. Its appearance in various expressions is perfectly 
consistent with the explicit Lorentz-invariance of our formulation. 

Let us now consider the supersymmetry (SUSY) transformations (we shall 
explicitly treat the case of type lIB theory, the case IIA being completely analogous). 

The original GS action (3.1) is invariant under: 

assX~'(,~) = -iY'~eAo"OA(~ ) , (5.3) 
A 

6ssO A,, ( ~ ) = e A,,. (5.4) 

In the hamiitonian framework the corresponding SUSY generators read: 

Q] = f" (5.5) 

Q,](}) = - i p L +  [ ~ " + ( - - 1 ) A ( x ' u + i O ,  o"O,~)](ouOA) ". (5.6) 

One can verify straightforwardly that Q,] commutes with all superstring con- 
straints TA(~ ), DA(~) (eqs. (3.4), (3.6)). Also, by definition, all the harmonics u, v, w 
are inert under SUSY. 

However, in order to preserve our covariant gauge fixing condition of the 
x-symmetry (4.4), we have to supplement the SUSY generators (5.6) by an ap- 
propriate K-symmetry rotation: 

= " - ' Dj~ 2 (~) - Y'~eA,,Q,] (5.7) 8ss EeA,QA ~ 
A A 

wB 
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- -  ¢t 
Evaluating QA (eq. (5.7)) on the small phase space (4.15) we obtain: 

- "  = - - '  d,~ [ w , @ ~  + w~'O~] QA (o"v "-)" - .  k 

f ~_ + i et 
_ w . y . i  1 ( 5 . 8 )  2, (o oho.v-:) f _ d t  [.~'h + (-1)*x/l[~t',t,~* + , ' , , l .  

Note that normal ordering ambiguities do not arise in the expression (5.8). 
Now, using (5.1), (5.2), (5.8) one obtains the commutation relations: 

{ ~),], Qg } = 28AAR"~, 

[0~. p,] =0, 
a- - /3  [ M~'', Q,]] = )(o~'")l, OA • (5.9) 

Hence, the super-Poincar6 algebra of the "harmonized" GS superstring (4.19) is 
anomaly free upon quantization. 

The explicit form of the SUSY transformations generated by (5.8) on the 
canonical variables which enter (4.19) is: 

2~p2---T o"o,,v- ~) [ ~2@](~ ) + wt~](~)] (5.10) 

- - i  

-,¢ }7( p+ ) - ' "  E (~ o- o°o,,~,- ':) 
A 

x f]oda[~°(e)+(-1)~x'o(e)l[~t<(a)+wF~(a)], ( 5 . 1 1 )  

d 
8ss~"(~)  = ~ ( S s s X " ( ~ ) ) ,  (5.12) 

~ss P -  = O, (5.13) 

- , ~ /2P+  ',o%a) 2~"~TWff(v ':o,oho ea) 8 . ~ s , A ( ~ ) = -  - w , * ( v -  - 
7/" 

× [&(~) + (-1)A x/(~)] 

and similarly for - -~ 3ss¢~ ~ with w, k --) ~k. 

(5.14) 
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The SUSY transformations (5.10)-(5.14) acts in a nonstandard way in as far as 
they mix canonical coordinates and their conjugate momenta. Also, for q-  the 
SUSY transformation even acts nonlinearly (5.11). Let us stress, however that the 
super-Poincar~ algebra (5.1), (5.2), (5.8), (5.9) is realized in an explicitly Lorentz-co- 
variant form: the SUSY parameters eA, , are ordinary constant D = 10 MW spinors. 

6. Conclusions 

Using ideas from our previous works [11, 13], we succeeded in the present paper 
to reformulate the GS superstring theory as a constraint system possessing Lorentz- 
covariant and functionally independent constraints. 

The crucial step in our formalism was the introduction of additional (pure gauge) 
bosonic degrees of freedom - Lorentz-spinor and Lorentz-vector harmonics corre- 
sponding to the homogeneous space SO(l, 9)/(SO(8) × SO(l, 1)) - which enabled us 
to perform covariant and functionally independent disentangling of the first-class 
and second-class parts of the superstring's fermionic constraints. These harmonics 
were also used to impose Lorentz-covariant gauge-fixing conditions for the local 
fermionic •-invariance and for the reparametrization invariance. 

While for type II theories the Lorentz spinor/vector harmonics are sufficient, for 
heterotic-type superstrings we had to introduce a second generation of harmonic 
degrees of freedom realizing the coset space SO(8) / (SU(4)x  U(I)). These are 
necessary in order to disentangle the resulting Dirac brackets for the remaining 
canonical superstring coordinates. 

Our results can be summarized by the following Lorentz covariant formulae: 
(1) The list of phase space variables (4.15). 
(2) The canonical hamiltonian (4.16) in which the reparametrization and 

gauge-symmetries are fixed. 
(3) The action (4.19). 

(4) The list of first class constraints (4.17)-(4.18) left in (4.19) after fixing the 
reparametrization and ~-invariances. They form a finite-dimensional Lie algebra 
corresponding to the purely harmonic constraints. 

/-I BRST (5) The ~ . . . . .  it (eq. (4.20)) which carries information only about the harmonic 
invariances since the others have been fixed. 

The super-Poincar6 algebra acts in a manifestly Lorentz-covariant way, but some 
translations and SUSY transformations are nonlinearly realized. An important 
feature of our formalism is that the super-Poincar6 algebra is apparently free of 
quantum anomalies. The potential anomalies in the covariant harmonic superspace 
approach manifest themselves in the possible (for D ~: 10) breakdown of the pure 
gauge nature of the auxiliary harmonic variables. 

Given the BRST charge (4.20) one can write down the superstring field action 
along the lines of refs. [20, 16]. 
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However, in order to keep super-Poincar6 invariance linearly realized, there exists 
another  option for further investigation. Namely, one can use the generalized BFV 
formalism of ref. [21], to convert the covariant irreducible second-class constraints 
of the GS superstring into first-class ones at the expense of introducing additional 
dynamical degrees of freedom. This task is now under study. 

We are grateful to S. Elitzur, A. Schwimmer and N. Seiberg for valuable 
discussions and for their instructive remarks. Two of us (E.N. and S.P.) are deeply 

indebted to E. Sokatchev and S. Kalitzin for numerous illuminating discussions and 
for teaching us the fundamentals of harmonic superspace. It is a pleasure for E.N. 
and S.P. to thank also the Weizmann Institute of Science, Rehovot, for most cordial 
hospitality. One of us (S.S.) would like to thank J.-W. van Holten and Y. Eisenberg 
for very instructive discussions. We arc also grateful to CERN Theory Division, 
where this work was initiated, for the warm hospitality and the creative atmosphere. 

Appendix A 

SPINOR NOTATIONS AND CONVENTIONS 

The D = 10 y-matrices and D = 10 charge conjugation matrix are takcn in the 
following representation: 

I'"= 0 ( o )  

0 C "r~ ] 
C l o  = 

(-c) o /  

0i i ' l l  _ F O F l  . . .  I"9= _6at~ " 

Indices of D = 10 left- (right-) handed MW spinors ,~,,, +,~ are raised by means of 

CLO: 

¢= (- 

¢o = c o % , .  
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Throughou t  the paper  we use D = 10 o-matrices with undot ted indices only: 

(o~)  o, = ( - c ) ~ d  ( o . ) ~ ,  

(o~') , ,v(o~) "4~ + (o~) , ,v(oU) v#= - 28~J,0~ '~, 

n ~  = d i a g ( - ,  + . . . . .  + ) .  

For  the D = 8 y-matr ices  and D = 8 charge conjugat ion matrix we use the following 

representat ion:  

~ t  b ~ ( Y / ~  

C 8 = 

C ~h 0 ) 

0 ( - c )  ~h ' 

C ab  = C ba . 

Indices of  s o ( g )  (s) and (c) spinors 0~, Ca are raised as: 

~,°= c°%~, ¢~= (-c)~%~. 

The  D = 6 7-matrices and 
representat ion:  

D = 6 charge conjugat ion matrix are taken in the 

c~ = 

0 (p')',) 
(~')~ o ' 

.) o Co 
(c), ,  

c k l  = C Ij, " 

Indices of  S0(6),  i.e. SU(4), (4) and (4) spinors O k, ~* are lowered by means  of C6- x. 

Ok = Ci, p~ I , 

~k = CkiO i. 
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In particular, D = 6 o-matrices with undotted indices are antisymmetric: 

/ i P~,,= ( P ) : # =  -P;~. 
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Appendix B 

A L G E B R A I C  P R O P E R T I E S  OF T H E  H A R M O N I C  E X P A N S I O N  

Here we shall consider only the case of harmonic expansion with respect to the 
second generation harmonics (2.4) realizing the compact coset space SO(8)/(SU(4) 
x U(I)). The case of harmonic expansion with respect to the first generation 
harmonics (2.1) was already discussed in [13]. The general form of the SO(8)/(SU(4) 
x U(1)) harmonic expansion of an arbitrary super(string)-field reads: 

E 1 
• [ x . ( . ) , o A ( . ) . u . , , , . , ]  = 

t t ~ O  

where: 

× c b , l " ' b ' l t " " b " l [ X " ( ' ) , O , 4 ( ' ) , u , v ] ,  (B.1) 

w~, -  w(,~/,]k (B.2) 

is the only independent SU(4) x U(l)-invariant combination of w's (2.4), and the 
coefficient super(string)-fields q,, in (B.1) are traceless with respect to any pair of 
SO(8) indices. The last restriction on 4,  is due to the identity: 

W a c W  - = - 2 t l  " 

The expansion (B.1) already reflects the fact that: 

EIJ¢I) = 0, E - - 4 '  = 0, (B.3) 

where E tJ, E -~ are defined in (2.8). Let us stress that, as it is the case in all 
harmonic expansions of superfields [17], the coefficient fields 4 ,  in (B.1) carry 
indices belonging to the "great" group SO(8), but are singlets with respect to the 
small group SU(4) × U(1). 

Now, using the simple identity: 

g ' f / W 2 =  _ k I / wi, pklwh 

it is straightforward to show that the harmonic equation 

E - ' ~ [  X~(.), 0~(-); u, v, w] = O, (B.4) 
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where q~ is of the form (B.1), is solved as: 

q~,,= 0, n >/1 ; ~o= ¢bo[ X"(. ), OA(. ),; u, v] =arbi t rary .  (B.5) 

Thus, we have shown that any harmonic super(string)-field q~ satisfying (B.3), (B.4) 
is in fact independent of the harmonics w~, ~ .  

Next, consider the only surviving coefficient field q~0 of the original field 'it' whose 
harmoic expansion reads: 

~ o ( X I Z ( ' ) , O A ( ' ) ;  U,U) = E [ U ~ ' ' ' l g ~ : ] s i n g l c ,  partin( . . . . . . .  , 
r ,s=O 

• "" V a ,  V a , . ' l  " ' "  a 2 ,  O ,  r s  [ , ' 

(B.6) 

where the coefficient fields are subject to the tracelessness conditions explained in 
ref. [13]. 

If (B.6) is subject to the equations: 

D~bq~ 0 = 0, D- ' q~0 = 0, D ~"q~0 = 0, (B.7) 

where D "h, D -+, D +" are defined in (2.7), we get, as already demonstrated in [13], 
that • (B.1) is independent of the first generation harmonics u~,, v +'-' too: 

qb~' .... t, . . . . . . .  -"= 0, ( r ,  s) st (0 ,0) ,  dPO.¢~[XU('),OA(')] = arbitrary. (B.8) O, r ~  

Now, from (B.5), (B.8) we obtain as a trivial consequence of eqs. (B.3), (B.4), 
(B.7), that also the following equations are satisfied: 

D " q ) -  ut, + ~t} +- , q~=0.  (B.10) 
tgV+. ~ 

The new harmonic differential operators introduced in (B.9), (B.10) have simple 
geometrical meaning. E -I  is precisely the second half of the coset generators 
corresponding to SO(8) / (SU(4)x  U(1)) and thus E IJ, E +-, ELI, E - I  span the 
whole SO(8) algebra. Similarly, D a is identified as the second half of the coset 
generators corresponding to SO(1,9) / (SO(8)× SO(l,1)) such that the operators 
~"l'=--D~h+ ~(~,' '~o"~8/Ov " ', +t , - ' ,o~b0/0u-~) ,  D-*,  D +~. D ~ span the whole 
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SO(I, 9) algebra (in the absence of the contribution from the second generation 
harmonics w to D ~l' (2.7)). 

Let us stress once again that E -I (B.9), D-"  (B.10) are not independent (quan- 
tized) first class constraints. They are not in addition to E + , E ~ ,  E/J, D ~, D +'. 
D ub, but eqs. (B.9), (B.10) are trivial consequences of (B.3), (B.4), (B.7) and of the 
specific form of the harmonic expansions (B.1), (B.6). 
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